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. . . . .

ABSTRACT

Descriptions of the use of six geophysical techniques are
presented to provide a broad understanding of their application
to sensing buried wastes and waste migration. Technical language
is avoided as much as possible so that those with limited technical
background can acquire a general understanding of current tech-
niques sufficient to define project requirements, select profes-
sional support, and monitor and direct field progrms.

Emphasis on cost-effective investigations at hazardous waste
sites requires an integrated, phased approach: (1) preliminary
site assessment involving the use of aerial photography, on-site
inspections, and readily available information to approximate
site boundaries and locations of waste concentrations, as well as
probable site geology; (2) geophysical surveys to pinpoint buried
wastes, estimate quantities, and delineate plumes of conductive
contaminants in groundwater; and (3) confirmation of groundwater
contamination through monitoring well networks designed on the
basis of plumes and subsurface stratigraphy defined by the
geophysical surveys.

The six geophysical techniques described include metal detec- 
tion, magnetometry, ground penetrating radar, electromagnetics, 
resistivity, and seismic refraction. Metal detectors and magneto- 
meters are useful in locating buried wastes. Ground penetrating
radar can define the boundaries of buried tranches and other
subsurface disturbances. Electromagnetic and resistivity methods
can help define plumes of contaminants in groundwater. Resistivity
and seismic techniques are useful in determining geological
stratigraphy.

.

Simple metal detectors respond to changes in electrical
conductivity caused by the presence of metallic objects, both
ferrous and nonferrous. Magnetometers detect perturbations in the
earth’s geomagnetic field caused by buried ferromagnetic objects
such as drums, tools, or scrap metal. They sense ferrous objects
at greater depths than metal detectors and can locate objects
even in the presence of interferences created, for instance,
by fences.

A ground-penetrating radar system radiates short-duration
electromagnetic pulses into the ground from an antenna near the
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surface. These pulses are reflected from interfaces in the earth
(such as trench boundaries) and picked up by the receiver section
of the antenna. Electromagnetic conductance measuring devices
yield a signal proportional to the conductivity of the earth
between the transmitter and receiver coils. Many contaminants
will produce an increase or decrease over the background con-
ductivity and thus can be detected and mapped. The resistivity
method measures the electrical resistivity of the geohydrologic
section which includes the soil, rock, and groundwater and provides
a tool to evaluate contaminant plumes and locate buried wastes.
Seismic refraction techniques can determine the thickness and
depth of geologic layers and the travel time or velocity of
seismic waves within the layers, thus revealing variations in
site conditions.

This document was submitted by Technos, Inc., in fulfillment
of Contract No. 68-03-3050 to Lockheed Engineering and Management
Services Company, Inc., under the sponsorship of the U.S.
Environmental Protection Agency. This report covers a period
from August 1, 1981, to December 31, 1982, and work was completed
as of December 31, 1982.
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