Radiological Primer
Understanding Radiological Terms

Richard Bloom and Dr. Antone Brooks
Health Safety Environmental Protection Committee
Hanford Advisory Board
Tom Rogers and Crystal Mathey
Washington State Department of Health
Radioactivity vs. Radiation

- What is radioactivity?
 - Property exhibited by certain types of matter of emitting radiation spontaneously.

- What is radiation?
 - Process by which energy is emitted from a source

- Forms of ionizing radiation
 - Gamma (photons) (Typical for Cesium (Cs))
 - Beta (electrons) (Typical for Cesium and Strontium (Sr))
 - Alpha (helium nucleus) (Typical for transuranics)
 - Neutron (neutrons)
 - Cosmic rays
Radiation Facts of Life

- Radiation is present everywhere
- We are all exposed to radiation at varying levels
- Radiation protection standards are set to minimize exposure
- Extensive research on the health effects of radiation has been conducted
Radiation – Units

- Radiation energy deposited per unit mass–
 - 100 rad = 1 Gray (Gy)
- Units reflecting radiation effect on humans
 - 100 rem = 1 Sievert (Sv)
 - 100 mrem = 1 mSv
 - 1 mrem = 1/1000 rem = 10 µSv
- Personal exposure is cumulative
 - Background radiation* = 310 mrem/year (3.1 mSv/yr)
 - Medical and Occupational* + 300 mrem/year (3 mSv/yr)

* Source NRC
Orders of Magnitude

mega (M) = $10^6 = 1,000,000$
unity = $10^0 = 1$
milli (m) = $10^{-3} = 0.001$
micro (µ) = $10^{-6} = 0.000001$
pico (p) = $10^{-12} = 0.0000000000001$
Radiation – Sources

- Personal Annual dose variants:
 - Terrestrial (5 – 100 mrem)
 - Cosmic (Altitude) (30 – 90 mrem)
 - Radon (150 – 1,800+ mrem)
 - Food/Drink (40 – 100 mrem)
 - Air Travel (5 – 50+ mrem)
 - Medical (1 – 5,000+ mrem)
 - Smoking (1,000 – ? mrem)
Radiation Limits
As Low As Reasonably Achievable (ALARA)

- Occupational limit – 5,000 mrem/year
- DOE Administrative On-site Limits = ALARA
 - General public/non-rad worker = 100 mrem/year*
 - Rad Worker = 500 mrem/year (above background)
 - Embryo/fetus = 500 mrem/gestation
 - Derived Concentration Standard (DCS) Water/ Air = 100 mrem/year (1 mSv/year)

* Limited to ¼ (25 mrem) from single source
Radiation Limits
As Low As Reasonably Achievable (ALARA)

- Off-site limits
 - Washington State Clean Air Act Ambient Air Standard
 - = 10 mrem/year
 - Drinking Water up to 35 mrem/year
 - Beta - 4 mrem/year (eg. Sr/tritium)
 - Alpha – 15 pCi/L (~11 mrem/year*)
 - Radium – 5 pCi/L (~20 mrem/year*)

 * Calculated based on DOE standard

EPA “Rad Net” Data Base Link for monitoring data

http://iaspub.epa.gov/enviro/erams_query_v2.simple_query
Radioactivity Measurement

- **Becquerel (Bq) (SI Units)**
 - 1 Bq = one decay (disintegration) per second
 - 1 Bq = 27 pCi = \(2.7 \times 10^{-11}\) Ci

- **Curie (Ci)**
 - 1 Ci = \(3.7 \times 10^{10}\) disintegrations per second (\(\sim\) # disintegrations per second in a gram of radium)

- **Disintegrations per minute (dpm)**
 - 60 dpm = 1 Bq
 - 1 dpm = \(\sim\) ½ pCi

- **Counts per minute (cpm)**
 - Detector measurement
 - Need to multiply by a factor to get dpm
Low Activity Radioactivity Measurement

- **Airborne**
 - Picocurie per cubic meter (pCi/m³)
 - Microcurie/milliliter (µCi/ml)
 - DAC (Derived Air Concentrations)

- **Solid**
 - Microcurie/gram (µCi/g)
 - Picocurie per cubic meter (pCi/m³)

- **Water**
 - Picocurie/liter (pCi/l)

- **Surface contamination/swipe**
 - Disintegrations per minute per 100 cm²
Air Measurements

Gross Beta in Air (Bi Weekly Filter) at C Farm, 2009

- DOH
- MSA
Radioactivity Area Control

- **Buffer Area**
 - Area used to access controlled areas.
- **Radiation Areas (direct dose)**
 - Direct radiation dose
- **Contaminated Areas**
 - Some loose radioactive material
- **High Contamination Area**
 - Extensive loose radioactive material
- **Airborne Contamination Area**
 - Potential for inhalation of radioactive material above limits
Releases/Fallout Routes of Exposure

- Rain washing radioactive materials out of the air
- External radiation direct from cloud
- Internal dose from radioactive materials in the air
- External dose direct from radioactive materials deposited on the ground
- Internal dose from eating and drinking radioactive materials in food
Portland Airborne Beta
1/1/85 to 12/30/87
Chernobyl
1/1/11 to 12/30/13
Fukushima
Strontium-90 (90Sr) and Iodine-131 (131I)

- 90Sr has a longer physical and biological half-life
- 90Sr deposits and stays in the bone and lung
- 90Sr has a large total dose to the bone or lung at a low dose-rate, causing an increase potential for leukemia as well as lung and bone cancer
- 131I has a shorter physical and biological half-life
- 131I concentrates in thyroid causing and increase potential for thyroid and other cancers
Cancer in US

Causes of Cancer

- Individual factors
 - Inherited mutations
 - Hormones
 - Immune conditions
 - Mutations that occur from metabolism

- Environmental factors
 - Tobacco
 - Infectious organisms
 - Chemicals
 - Radiation

Lifetime Risk = Men 1 in 2 (43.9%)
 = Women 1 in 3 (38%)
Cause of death – 1 in 4 (25%)

Source: American Cancer Society
Linear Dose Response

- A linear dose-response predicts that cancer risk is present at even extremely low doses
- Extensive research on biological effects of low dose radiation resulted in many new observations
Sources of Radiation Exposure in the United States

- Radon and Thoron - 37%
- Medical Procedures - 36%
- Nuclear Medicine - 12%
- Consumer Products - 2%
- Industrial and Occupational - .1%
- Internal - 5%
- Terrestrial (Soil) - 3%
- Cosmic (Space) - 5%

Natural Sources - 50%
~310 millirem (0.31 rem)

Manmade Sources - 50%
~310 millirem (0.31 rem)

Full report is available on the NCRP Web site at www.NCRPpublications.org.
Example of How Cancer Risks are Expressed by Medical Organization

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Approximate additional risk of fatal cancer for an adult from examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible:</td>
<td>less than 1 in 1,000,000</td>
</tr>
<tr>
<td>Minimal:</td>
<td>1 in 1,000,000 to 1 in 100,000</td>
</tr>
<tr>
<td>Very Low:</td>
<td>1 in 100,000 to 1 in 10,000</td>
</tr>
<tr>
<td>Low:</td>
<td>1 in 10,000 to 1 in 1000</td>
</tr>
<tr>
<td>Moderate:</td>
<td>1 in 1000 to 1 in 500</td>
</tr>
</tbody>
</table>

Note: These risk levels represent very small additions to the 1 in 5 chance we all have of dying from cancer.

Source: www.radiologyinfo.org
Medical Radiation Exposures

- 200 million medical x-rays/year
 - X-ray (≈0.1 Rad each)
- 100 million dental x-rays/year
 - Dental (≈0.07 Rad)
- 10 million doses of radiopharmaceuticals/yr
- 75 million CT scans/year
 - Head scan 30-50 Rad/scan
 - Body scan 50-100 Rad/scan
- 8 million radiation cancer therapy/yr
 - 100-8000 Rad total/treatment

Source: DOE Dose Chart.
Increased Risk of Cancer in Adult Example

Increased cancer risk per 1 rem* = 0.055%

Population impact of 1 rem –
1 earlier death due to cancer in 1,800

Risk of Cancer Death = 25%

Procedure Dose – 1,000 mrem (10mSv)
= 0.055%

New Individual Risk = 25.055%

* Source = ICRP (International Commission on Radiation Safety)
Differing Views on Radiation Risk

- There is no safe level of radionuclide exposure whether from food, water or other sources
- Elevated radiological exposure above average background is beneficial (e.g. Live in Denver)
- The risk associated with low radiation doses needs to be weighed against the benefit of the exposure but should always be maintained ALARA
Conclusion

- The cancer risk is proportional to the exposure.
- Occupational limits are set at levels (< 5 rem/year) such that cancer risk is minimal when compared to other risk factors but ALARA principles and risk vs. benefit is applied.
- Effect of total radiation exposures below 1 rem per year (1,000 mrem/year) are below a level where disease rate effects are masked by the relatively high overall rate of cancer.
- Lifetime risk for cancer remains relatively high regardless of added radiation exposure. Lifestyle plays a critical roll in cancer risk.