Cesium Removal and Storage – Update on Fukushima Daiichi Status

MARK TRIPLETT

Senior Advisor
Risk and Decision Sciences
Energy and Environment Directorate

Briefing for Hanford Advisory Board, Tank Waste Committee

April 15, 2015
Discussion Topics

 ► Message – Water treatment activities at Fukushima Daiichi have demonstrated cesium removal and storage technologies and preliminary options for disposition of cesium-loaded secondary wastes have been examined.
 ► Fukushima cooling system for damaged reactor cores and waste stream cesium content
 ► Cesium removal systems currently in use.
 ► Storage system for spent cesium adsorption vessels
 ► Options for future disposal

 ► Acknowledgements: data obtained from reports and colleagues at:
 ■ Tokyo Electric Power Company (TEPCO) and Fukushima Decommissioning Engineering Co. (FDEC)
 ■ Ministry of Economy, Trade and Industry (METI)
 ■ International Research Institute for Nuclear Decommissioning (IRID)
 ■ Japan Atomic Energy Agency (JAEA)
 ■ Kurion, Inc.
 ■ AVANTech, Inc.
Current Status of Units 1-4 and Cooling Water System
Motivations for Cesium Removal at Fukushima

- 400 m³/day of excess cooling water (~100 kgal/day)
- High cesium content, 5×10^6 Bq/ml (135 µCi/ml) and high dose rate
- By June 2011, storage capacity (radwaste building) was rapidly filling with no viable options
- Removal of cesium would allow multiple storage options and buy time for future treatment to remove less problematic contaminants

- Kurion’s cesium removal system was designed, fabricated, and delivered in less than 3 months. It began operating on June 17th.
Comparison of Hanford Tank Waste to Fukushima Cooling Water

<table>
<thead>
<tr>
<th></th>
<th>Hanford Tank Waste</th>
<th>Fukushima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cs-137</td>
<td>39 Mci</td>
<td>19 Mci (Melted fuel and contaminated water)</td>
</tr>
<tr>
<td>Concentration</td>
<td>236 µCi/mL (LAWPS Conceptual Design Specification)</td>
<td>135 µCi/mL (initial) 0.54 µCi/mL (recent)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Highly alkaline (high pH) with high sodium concentration</td>
<td>Initially, highly saline (from seawater used to cool reactors) but now resembles local groundwater</td>
</tr>
</tbody>
</table>

Removed = 7.0 Mci (through August 2014)
Now about 300 m3/day
Other measures will further reduce GW influx

3 ALPS Systems are installed:
- Original ALPS (Toshiba & Energy Solutions)
- Improved ALPS (Toshiba & Energy Solutions)
- High-Performance ALPS (Hitachi & AVANTECH)

ALPS = Advanced Liquid Processing System
SARRY = Simplified active water retrieval and recovery system
HIC = High-Integrity Container
Sr = Strontium
Three primary cesium removal technologies have been used at Fukushima

1. Areva
 - Coagulation/sedimentation process
 - Generated very large volume of difficult to manage waste sludge (~600 m3) stored in tanks (ferrocyanide and other issues)
 - Discontinued operation after about 3 months (June-August 2011)

2. Kurion
 - Zeolite-based system; herschelite-based media (chabazite – naturally-occurring mineral) (KUR-H™ later replaced with KUR-EH™)
 - Spent adsorbent columns replaced then removed to storage
 - Shielding provided by carbon steel outer container
 - Strontium removal recently added (KUR-TSG™)
 - Operated June 2011 to present

3. SARRY: Hitachi with Shaw Environmental and AVANTech
 - Zeolite-based system; crystalline silico-titanate (CST) man-made media;
 - Spent adsorbent columns replaced then removed to storage
 - Shielding from double-layered carbon steel container with lead shot in annulus
 - Passive cooling integrated into container design
 - Strontium removal recently added
 - Operated August 2011 to present

Sources: IRID, TEPCO, Kurion, AVANTech
Cesium adsorption device (Kurion)

- Dimensions: 1.4 m (dia) x 2.4 m (h)
- Weight: Approx. 15 tons
- Zeolite-filled stainless steel vessel with carbon steel container as shield
- Surface dose rate = 400 mrem/h (Vessel replaced at this dose)

- Up to ~20k – 30k curies cesium per vessel
- Decontamination Factor (DF) = 10^5 – 10^6
- Processing capacity: up to 1,200 m3/day (with 4 systems)
- ~600 spent vessels in storage (4.6 MCi as of August 2014 [JAEA])

Source: IRID
Method of decontamination employed by cesium adsorption tower (Kurion)

Decontamination by adsorption tower

- Accumulated water is passed through the adsorption tower that has been charged with an adsorbent and the radioactive materials and contaminated materials are removed.
- Zeolite is used as the adsorbent because its basic design enables it to remove oil, technetium (Tc), cesium (Cs) and iodine (I). (Sr removal has recently been added.)
 - By leveraging the ion exchange effect of zeolite, radioactive materials, such as cesium, are adsorbed and the water is purified.
 - Zeolite is the broad name for aluminosilicates with relatively large spaces in their crystalline construction. They are inorganic and have superior radiation-resistant properties.
 - Zeolite was also used at Three Mile Island in the US to treat contaminated water.

Chabazite is a naturally-occurring zeolite that Kurion has modified for cesium removal at Fukushima.

Positive ions within the structure are replaced by Cs

Source: TEPCO
Contaminated water is fed through a special material (zeolite) that selectively adsorbs radioactive materials.

Spent vessels are periodically replaced.

The SARRY system is a cooperative effort by Hitachi, Shaw Environmental, and AVANTech.

- Up to ~200k Ci cesium per vessel
- DF = 10^6
- Surface dose rate = 400 mrem/h
- Passive cooling system built into container design
- Processing capacity: 1,000 – 1,200 m^3/day (with two systems)
- ~120 spent vessels in storage; ~2.4 MCi (August 2014, JAEA)
- Cylinder: Weight: Approx. 24 tons, Outer diameter: 1.4m, Height: Approx. 3.6m
Outer appearance of 2nd Cesium adsorption device – (SARRY)

2nd Cesium adsorption device (vessel loading)

Source: TEPCO & IRID
Cesium adsorption tower temporary storage facility

Source: TEPCO

Kurion cesium adsorption towers: 594, SARRY cesium adsorption towers: 122 (as of March 27, 2015)
Cesium adsorption tower temporary storage facility

Source: TEPCO
Cesium adsorption tower temporary storage facility

Cesium adsorption tower storage area

2nd cesium adsorption tower storage area

Area surrounded by dotted lines indicates range of motion of crane

Two spent adsorbent vessels stored in each concrete box (HICs shown)

Source: TEPCO
Research into long-term storage and disposition of Fukushima waste

(Source: International Research Institute for Reactor Decommissioning (IRID), July 18, 2014)
Japan Atomic Energy Agency (JAEA) Research on Storage and Disposition of Spent Cs Vessels

- Heat load distribution (maximum temperature ~500°F)
- Hydrogen generation and diffusion (vessels are vented; hydrogen concentration < 1.8%)
- Options for long-term storage and disposition including vitrification testing of zeolite media
Fukushima will continue to remove cesium, strontium and other radionuclides from reactor cooling water

Cesium and strontium removal and storage operations are working well with very high reliability

Key storage issues have been addressed with support from the Japan Atomic Energy Agency (JAEA)

- Dose, shielding, safe storage system
- Heat generation and stability of media
- Hydrogen generation, etc.

Options for long-term disposition including vitrification media are being evaluated
Background – March 11, 2011 Earthquake and Tsunami
Accident at Fukushima

Before the Earthquake

After the hydrogen explosions
Quantity of secondary wastes in storage at Fukushima Daiichi

Source: IRID