
1 
 

MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-

EVOLVING REACTIONS 

 

Richard Pokorný,1 David A. Pierce,2 Pavel Hrma,2, 3 

1Department of Chemical Engineering, Institute of Chemical Technology in Prague, 

Technická 5, 166 28, Prague 6, Czech Republic;2Pacific Northwest National Laboratory, 

Richland, WA 99352, USA; 3Division of Advanced Nuclear Engineering, Pohang University 

of Science and Technology, Pohang, Republic of Korea  

pavel.hrma@pnl.gov, fax 509-372-5997 

 

Abstract  

In this study, we present a model for the kinetics of multiple overlapping reactions. 

Mathematical representation of the kinetics of gas-evolving reactions is crucial for the 

modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates 

multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste 

melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger’s method 

combined with least-squares analysis. The power-law kinetics with variable reaction order 

sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.  
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batch, TGA 

 

Introduction 

Successive and simultaneous reactions are common in reacting mixtures, and multiple 

overlapping reactions are typical in glass batches during their conversion to molten glass [1-
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19]. Yet hardly any mixture found in nature or industrial technology has as many components 

and undergoes as many reactions as melter feeds during vitrification of nuclear wastes [20, 

21]. The waste itself contains compounds of 40 to 60 elements [22] that react with glass-

forming additives on heating. Consequently, the non-isothermal thermogravimetric analysis 

(TGA) of high-level waste melter feeds reveals multiple overlapping peaks on the dξ/dt 

versus T curve, where ξ is the conversion progress, t is the time, and T is the temperature. 

These reactions occur within the cold cap, a layer of melter feed floating on the pool of 

molten glass in the melter [23, 24]. The feed is charged on the top of the cold cap, where the 

temperature is ∼100°C, and as it moves towards the bottom, where the temperature is 

∼1000°C, it is converted to glass [25, 26]. A model for the conversion kinetics is needed for 

the cold cap model that in turn is a part of the model of the melter. 

In this paper, we analyze the gas evolution process as recorded by the non-isothermal 

TGA. We do not attempt to assess the mechanisms of individual gas-evolving reactions from 

solid and liquid components, which are both successive and simultaneous and include the 

release of chemically bonded water, reactions of nitrates with organics, and reactions of 

molten salts with solid silica. We merely assume that the reactions are independent and their 

rates can be described by the equation -dξi/dt = fi(ξi)Aiexp(-Bi/T), where fi(ξi) = in
iξ  is a 

power-law function, ξ is the degree of conversion, A is the pre-exponential factor, B is the 

activation energy, n is the (apparent) reaction order, and the subscript i stands for the ith 

reaction.  

Our goal is to model the reaction kinetics in a way that is sufficient and adequate for 

modeling of the cold cap process. To this end, we deem the four-parameter simulation for 

each reaction satisfactory. These parameters are Ai, Bi, ni, and wi, the weight of the ith reaction 

(the fraction of the total mass loss caused by the ith reaction). Considering the number of 

reactions, this number of parameters is too large to effectively optimize with least-squares 
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regression, especially for less distinct peaks. Therefore, we applied Kissinger’s method [27] 

for the direct estimate of Bis based on the shift of the peak maximum temperature with the 

rate of heating and used least-squares optimization for the remaining parameters. The kinetics 

of reactions with overlapping peaks has been investigated since 1980s [28–36] and the two-

step optimization was employed by several researchers [30, 31, 32, 36]. 

 

Theory 

The mechanisms of reactions that occur during the conversion of melter feeds to glass are 

complex. Fortunately, the power-law function satisfactorily describes most of the gas-

evolving melting reactions monitored by the TGA, allowing us to choose the standard power-

law kinetics, according to which the rate of gas-evolving reactions can be expressed as  
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where xi is the fraction of material reacted in the ith reaction. 

In his seminal paper, Kissinger [27] derived for Bi the formula 
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where Φ = dT/dt is the temperature increase rate and the subscript m denotes the peak 

maximum (d2xi/dt2 = 0). This approximate formula is highly applicable for batch melting 

reactions, as shown in Appendix A. 
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If Φ is constant and n≠1, integration of Eq. (1) yields  
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Following Kissinger, who used Murray and White’s approximation for the exponential 

integral [37], Eq. (3) becomes 
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This expression allows us to eliminate x from Eq. (1), thus expressing dxi/dT as a function 

of T and Φ alone.  

For multiple reactions that are mutually independent, we can write (using T = T0 + Φt) 
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where x = Σxi. 

 

Experimental 

Table 1 displays the composition of the melter feed used. As described elsewhere [21], 

this feed was formulated to vitrify a high-alumina high-level waste to produce glass of the 

composition (with mass fractions in parentheses): SiO2 (0.305), Al2O3 (0.240), B2O3 (0.152), 

Na2O (0.096), CaO (0.061), Fe2O3 (0.059), Li2O (0.036), Bi2O3 (0.011), P2O5 (0.011), F 
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(0.007), Cr2O3 (0.005), PbO (0.004), NiO (0.004), ZrO2 (0.004), SO3 (0.002), K2O (0.001), 

MgO (0.001), and ZnO (0.001). This glass was designed for the Hanford Tank Waste 

Treatment and Immobilization Plant, currently under construction at the Hanford Site in 

Washington State, USA. 

The simulated melter feed was prepared, as described by Schweiger et al. [21], as slurry 

that was dried at 105°C overnight in an oven. For the TGA, feed samples of 10–60 mg were 

placed in a Pt crucible from TA Instruments (New Castle, DE, U.S.A., SDT-Q600) and 

heated from ambient temperature (∼25°C) to 1200°C at the rates 1, 5, 10, 15, 20, and 

50 K/min.  

Fig. 1 shows the TGA curves for the melter feed heated at several rates. As expected, the 

peaks shift to higher temperatures and the peak heights generally decrease as the rate of 

heating increases.  

To deconvolute the TGA curve of dx/dT versus T for a series of Φs, Tims were determined 

as temperatures of the peak maxima or estimated for shoulders on larger peaks. From these 

data, with Eq. (2), we obtained Bis. Having predetermined Bis facilitated the application of the 

least squares analysis that we employed to fit the combined Eqs. (4) and (5) to measured 

dx/dT versus T data to obtain three independent parameters, Ai, ni, and wi, for each reaction. 

 

Results 

In our previous work [23], we fitted Eq. (5) with ni = 1 to experimental data, taking 

advantage of the fact that with ni = 1 one can calculate Ai using the formula Ai = 

(BiΦ/Tmi
2)exp(B/Tmi). Fig. 2 displays the results of the least-squares analysis for eight major 

reactions. Clearly, the agreement of measured and calculated curves is far from satisfactory: 

1) the conversion rates are underestimated between peaks 1 and 2 and peaks 4 and 5; 2) the 
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long tail of peak 8 is not well simulated; 3) some calculated peaks overshoot the measured 

peaks. 

To improve the model, we upgraded it to the nth-order reaction model and added reaction 

1A between reactions 1 and 2. For the overlapped reactions, such as 1A, we obtained the Tm 

by subtracting the neighboring peaks as calculated from the measured curve. Figure 3 displays 

the Kissinger plot for all nine peaks. Table 2 lists the values of B calculated with Eq. (2), 

together with the standard deviations and the coefficients of determination, R2. Table 3 lists 

the result of the least-squares analysis and Fig. 4 displays the deconvoluted TGA curve for the 

heating rate 15 K/min. 

As Fig. 4 shows, peak 8 possesses a long tail, which is probably caused by a process with 

a temperature-dependent B8 or by a conglomerate of multiple reactions. The algorithm for the 

least-squares analysis simulates this long tail via a high value of the reaction order. The fitted 

nis were also abnormally high for some other peaks (peak 5, as can be seen in Table 3, and 

peaks 1, 1A, and 7 in similar fits to some other heating rates). Because these elongated peaks 

unduly influence the neighboring peaks, we constrained nis for peaks 1, 1A, 5, and 7 to 0 < ni 

< 2 but we left peak 8 to retain an unrestricted reaction order to represent the evolution of gas 

at high temperatures as faithfully as possible. Peak 8 gases might be responsible for foaming 

that affects, and perhaps even controls, the melting rate of the cold cap in the waste glass 

melter [23, 25]. Tables 4, 5 and 6 present the values of the kinetic coefficients Ai and ni and 

the reaction weights, wi, from fitting joined Eqs. (4) and (5) to the TGA curves. 

Assuming that the kinetics of individual reactions does not change with the heating rate 

(Kissinger’s formula is based on this assumption), the parameters Ai and ni are independent of 

Φ. Indeed, as the very small values of standard deviation in Table 4 indicate, log(Ai) values 

are almost constant and their averages represent the averaged pre-exponential factors for 

individual reactions across the heating rates employed. 
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Somewhat larger standard deviations of nis (up to 39%) indicate differences in the shapes 

of the peaks, but no trends can be discerned from the values. The ni values of peaks with 

negligible weights (those in parentheses) were not included in the averages listed in Table 5 

(see the virtually nonexistent peak 5 in Figs. 4 and 5). Note that ni = 2 was imposed as the 

upper limit for peaks 1, 1A, 5 and 7.  

On the other hand, wi can vary with Φ, as consecutive reactions may be influenced by 

preceding ones, i.e., reactions that run at a lower temperature affect the reactions that follow 

them, especially when the heating rate is low. Accordingly, some reactions are not 

independent, but not to the extent that would invalidate the superposition relationship, Eq. (5). 

Table 7 lists wi values recalculated using the average values of Ai and ni listed in Tables 4 

and 5. Since wi is the fraction of the material reacted by ith reaction, the sum of the wis for all 

reactions, w = 0.202 ±0.003, represents the total mass loss during the heat treatment. Table 7 

also lists the measured values of fractional mass loss, wTGA. Fig. 6 plots the corresponding 

comparisons of measured and calculated TGA curves together with the peak deconvolution. 

 

Discussion 

Our present objective is describing the gas evolution from a melter feed in a way suitable 

for implementing its kinetics into a mathematical model of the cold cap response to the 

conditions in the glass melter. To this end, Eq. (5) with the numerical values of parameters is 

adequate even though the in
ii xx )1()(fi −=  used does not represent the reaction mechanism. 

Provided that the values of Ai and ni are independent of Φ, the only task left is to construct 

reasonable functions of wis versus Φ, at least for the rates within the interval of 5 to 20 K/min 

that exist within the cold cap. As evidenced from Table 7, the wi versus Φ values significantly 

deviate from constancy, at least for some peaks. Only w1 is virtually independent of Φ. While 

some wis fluctuate because of experimental error, some peaks exhibit discernible trends for 



8 
 

which an approximation function wi(Φ) could possibly be constructed. The experimental 

errors are probably associated with the small sample size; the tiny Pt crucibles contained the 

sample mass of 30 mg in average, which is rather small for a mixture of granular materials. 

Therefore, an instrument that allows larger samples will be used for future experiments. 

Three sources of potential errors arise from various approximations of the model itself: 1) 

approximation of the exponential integral as a truncated series, 2) approximation used in the 

development of Kissinger’s formula, Eq. (2), and 3) shift in Tm caused by peak overlapping. 

The third issue, the shift in Tm, can be seen in Fig. 1 and is illustrated in Fig. 7. As discussed 

in Appendix A, these approximations have negligible impact on the evaluation of the TGA 

curves under consideration.  

To further verify that Kissinger’s formula provides correct values of B in spite of the Tm 

shift, we optimized Bis directly from data. Separate fitting to each heating rate with the 

average values of Ai and ni and the wi values listed in Table 7 resulted in fluctuating Bis with 

averages close to the values from Kissinger’s formula, though with lower standard deviations. 

Fitting the model to all data for all heating rates at once with the same Ai, ni and the wi values 

as for the separate fitting resulted in Bis that were close to both the averages and Bis obtained 

using Kissinger’s method—see Table 8. Thus, additional fitting did not bring any 

improvement worth considering. 

Because of the compensation effect between Bi and Ai that results from the relatively 

narrow temperature interval in which the ith reaction starts and is complete, nearly the same fit 

can be obtained from relatively wide ranges of Bi and Ai combinations [28]. For this reason, 

Kissinger’s method appears preferable to fitting of Bi and Ai simultaneously. A similar 

conclusion seems to have been reached by others [30–33, 36].  

 

Conclusions 
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The kinetic model with empirical reaction order yields a reasonable simulation for the 

kinetics of multiple overlapping reactions that are typical of melting glass batches. The 

power-law model employed was successful even though it does not represent the mechanism 

of reactions between multiple granular solids and ionic and glass-forming melts produced in 

glass batches at higher temperatures. Thus, each reaction was sufficiently characterized with 

four coefficients, i.e., the activation energy, the pre-exponential factor, the reaction order, and 

the weight (the fraction reacted), of which only the weight is a weak function of the rate of 

heating. To avoid problems with the compensation effect between the activation energy and 

the pre-exponential factor, we successfully combined Kissinger’s method with least-squares 

optimization. The three kinetic coefficients plus the reaction weights thus obtained can be 

used in an advanced model for glass melting in the cold cap.  
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Appendix A. –Kissinger’s formula 

Consider the reaction rate in the form 
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where f(x) is the reaction mechanism function and the dot above the symbol denotes the time 

derivative. Lists of various f(x) abound in the literature [31, 35,37, 39, 40]. If the temperature 

rises at a constant heating rate, Φ, then, by setting 0=x , we obtain the formula  
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where f’ = df/dx, and the subscript m denotes the maximum reaction rate. Introducing the 

notation Y = Φ/Tm
2, fm’ = f’(xm), and Θ = 1/Tm, Eq. (A.2) becomes 
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By differentiation with respect to Θ, we obtain dY/dΘ = −BY(1 + ε), where  

ε = −B-1d ln(−fm’)/dΘ. This equation was derived by Criado and Ortega [39]. Here we have 

assumed that B is independent of Tm. This may not be always the case [41]. For example, for 

diffusion-controlled processes in glasses and polymers, B is a function of temperature.  

Provided that xm changes little with Tm, ε can be neglected and B = −d ln(Y)/dΘ, which is 

the famous Kissinger formula [27], usually presented as 
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To prove that ε << 1, we integrate Eq. (A.1) and use Eq. (A.3) to eliminate Φ, obtaining 
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exponential integral, Eq. (A.6) becomes [27] 
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Based on this equation, recollecting that ε = −B-1dln(−fm’)/d(1/Tm), and with some algebra, 

one obtains for the nth order reaction, i.e., f(x) = (1 - x)n, the following expression: 
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With Tm/B < 0.05, ε < 0.025 for 1 < n < 10 (see Fig. A1), but it is deduced that Kissinger’s 

formula fails for large values of Tm/B and n. The smallness of ε was asserted for various other 

reaction mechanisms with Tm/B small enough by Criado and Ortega [39] who used the 

approximation by Senum and Yang [42] and concluded that ε < 0.05 as long as B/Tm > 10 for 

commonly used functions f(x); Senum and Yang approximation differs little from the simpler 

Murray and White approximation if T/B < 0.05. 

Eq. (A.7) can be used to express xm as a function of Tm for various reaction mechanisms. 

Fig. A2 shows xm for the nth order reaction as a function of both n and Tm/B, confirming that 

that xm changes little with Tm for the range of Tm/B values typical in glass melting.  
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To explore the effect of overlapping peaks on Bi, let us start from Eq. (5) in the form 
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where the prime denotes the derivative. Rearranging and taking a logarithm, Eq. (A.10) 

becomes 
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where 22 /dd Txx =′′ . The Kissinger formula now assumes the form 
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We have already shown that the third term on the right hand side can be neglected for 

high-temperature reactions. The second term is negligible if 
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Then Eq. (A.11) becomes Eq. (A.4). If only two peaks overlap, inequality (A.13) reduces to 
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T
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Let us check this inequality with peaks 2 and 3 as shown in Fig. 7, where the first 

maximum associated with reaction 2 (i ≡ 2) is shifted to a higher temperature because of the 

overlapping peak of reaction 3 (j ≡ 3). With the values w3 = 0.054 and )( 23 mTx ′′  = 1.67×10-4, 

we get )( 222 mTxw ′′  = 9.03 ×10-6 K-2; with B2 = 1.88 ×104 K, Tm2 = 521 K, and )( 22 mTx′  = 

0.665, we have and )( 22
2
22 mm TxTB ′−  = 4.60 ×10-2 K-2. Hence, inequality (A.13) is satisfied for 

this example. It is also likely to be satisfied if the central peak overlaps with two peaks on the 

opposite sides. Then the two values of )( mijj Txw ′′  of the side peaks have opposite signs.  

However, if the neighboring peaks are close to each other and the slope Txx jj d/d ′=′′  at T 

= Tmi is large, inequality (A.13) is not satisfied. As Wilburn [33] showed, it is impossible to 

determine the kinetic coefficients of such reactions. This may be so, yet any model that 

simulates the measured data with a sufficient accuracy is suitable for mathematical 

representation of the response of the reacting mixture to increasing temperature within the 

realistic rate of heating. Here our objective is practical application of the model for a specific 

response rather than constructing molecular mechanisms of individual reactions.  

 

Appendix B. –Reaction peaks 
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For f(x) = (1 - x)n, the relationship between the peak height an Tm can be derived from 

Eqs. (A.1) and (A.2). The resulting expression is: 
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This expression contains both Φ and Tm, but Tm changes in response to Φ according to the 

formula 

 

 

( ) 







−



 −+=Φ

m

mm

T
B

B
T

n
B

AT
exp

2
11

2

. (B.2) 

 

The line in Fig. B1 plots the peak height, dx(Tm)/dt, against Tm and Φ for peak 3. The data 

points in Fig. B1 show the heights of deconvoluted peaks (the diamonds) and the heights of 

the peaks on the TGA curves (the squares). Note that deconvoluted peak heights ale located 

close (virtually on) the line representing formulas (B.1) and (B.2), whereas the points 

corresponding to the peak heights on the TGA curves are mostly above the lines and 

somewhat shifted as discussed in Appendix A. 

Finally, by using Eq. (A.4), we have 
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This function is illustrated in Fig. B2. By Eq. (B.3), the relationship between Tm and Φ is 

independent of the reaction mechanism. 
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Figure captions 

Fig. 1 Measured TGA curves for melter feed heated at various rates 

Fig. 2 Measured and calculated curves for melter feed heated at 10 K/min for first-order 

reaction model  

Fig. 3 Kissinger plot for melter feed TGA peaks 

Fig. 4 Deconvoluted TGA curve for Φ = 15 K/min  

Fig. 5 Deconvoluted TGA curve for Φ = 5 K/min 

Fig. 6 Measured (solid line) and calculated (dashed line) TGA curves and deconvolution 

peaks for individual heating rates using average Ai and ni 

Fig. 7 Effect of peak overlapping on measured Tm   

Fig. A1 Error (ε) in B versus n for three values of Tm/B shown legend 

Fig. A2 xm versus n and Tm/B (see legend) 

Fig. B1 Peak height as dx(Tm)/dt versus Tm  and Φ (A = 2.93×1010s-1, B = 1.611×104 K, n = 

0.54) 

Fig. B2 Tm versus Φ for B = 1.6×104 K and several combinations of Tm0 and Φ0 [see Eq. (B3)] 

as shown in legend 
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Table 1. Melter Feed Compositions in g/kg glass (main components) 
 

Chemical Mass Chemical Mass 
Al(OH)3 367.50 Na2SO4 3.57 
H3BO3 269.83 Bi(OH)3 12.80 
CaO 60.80 Na2CrO4 11.13 
Fe(OH)3 73.83 KNO3 3.03 
Li2CO3 88.3 NiCO3 6.33 
Mg(OH)2 1.70 Pb(NO3)2 6.17 
NaOH 99.53 Fe(H2PO2)3 12.43 
SiO2  305.03 NaF 14.73 
Zn(NO3)2·4H2O  2.67 NaNO2 3.40 
Zr(OH)4·0.654H2O  5.50 Na2C2O4·3H2O   1.30 
  Total 1349.6 

 
Table 2. Values of activation energy, Bi, its standard deviation, s, and coefficient of 
determination, R2. 
 

Peak Bi [104 K] s [104 K] R2 
Peak 1 2.25 0.18 0.974 
Peak 1A 2.04 0.17 0.973 
Peak 2 1.88 0.06 0.996 
Peak 3 1.61 0.12 0.977 
Peak 4 1.83 0.11 0.986 
Peak 5 4.49 0.32 0.979 
Peak 6 2.98 0.42 0.926 
Peak 7 3.17 0.31 0.962 
Peak 8 2.60 0.60 0.862 

 
Table 3. Optimized values of ni, wi, and log(Ai/s-1) for Φ = 15 K/min. 
 

Peak 1 1A 2 3 4 5 6 7 8 
ni 2.73 1.83 1.09 0.51 2.11 12.03 0.79 1.66 3.44 
wi 0.010 0.008 0.026 0.051 0.036 0.016 0.010 0.031 0.016 
log (Ai) 20.24 17.09 14.06 10.49 11.57 27.94 16.96 17.32 12.93 

 
Table 4.Values of log(Ai/s-1), average values, standard deviations, and relative standard 
deviations (RSD) for Peaks 1–8. 
 

Φ [K min-1] 1 1A 2 3 4 5 6 7 8 
1 20.28 16.93 13.98 10.41 11.53 28.02 16.70 17.24 12.41 
5 20.35 17.16 14.05 10.54 11.57 28.04 16.98 17.26 12.79 

10 20.15 17.05 14.03 10.34 11.36 28.37 17.08 17.41 12.67 
15 20.24 17.09 14.06 10.49 11.57 27.94 16.96 17.32 12.93 
20 20.17 17.01 14.03 10.52 11.64 27.95 16.81 17.33 12.85 
50 20.34 17.07 14.01 10.47 11.41 28.09 16.85 17.37 12.52 

Average 20.26 17.05 14.03 10.46 11.51 28.07 16.90 17.32 12.69 
Stdev 0.08 0.07 0.03 0.07 0.10 0.14 0.12 0.06 0.18 
RSD 0.004 0.004 0.002 0.007 0.009 0.005 0.007 0.003 0.014 
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Table 5. Values of ni, average values, standard deviations (values in parentheses were not 
included), and relative standard deviations for Peaks 1–8.  
 

Φ [K min-1] 1 1A 2 3 4 5 6 7 8 
1 2.00 1.90 0.71 0.39 3.39 (1.19) 1.81 (0.10) 2.05 
5 2.00 2.00 0.93 0.62 2.23 (0.61) 1.00 1.29 3.13 

10 2.00 1.32 1.30 0.56 1.79 2.00 0.95 2.00 5.31 
15 2.00 1.99 1.09 0.50 2.37 2.00 1.58 1.15 3.59 
20 2.00 2.00 1.08 0.57 2.42 2.00 1.78 (0.55) 4.70 
50 2.00 2.00 1.23 0.61 1.04 2.00 2.66 0.90 4.41 

Average 2.00 1.87 1.06 0.54 2.21 2.00 1.63 1.33 3.87 
Stdev 0.00 0.27 0.21 0.08 0.77 0.00 0.63 0.47 1.18 
RSD 0.00 0.14 0.20 0.15 0.35 0.00 0.39 0.35 0.30 

 
Table 6. Values of wi and the total fraction reacted, w = Σwi, for Peaks 1–8. 
 

Φ [K min-1] 1 1A 2 3 4 5 6 7 8 w 
1 0.009 0.008 0.026 0.052 0.041 0.000 0.045 0.000 0.018 0.198 
5 0.007 0.011 0.027 0.055 0.037 0.000 0.034 0.015 0.022 0.207 

10 0.008 0.007 0.031 0.049 0.031 0.002 0.023 0.028 0.023 0.203 
15 0.008 0.010 0.025 0.051 0.038 0.001 0.036 0.009 0.023 0.202 
20 0.008 0.010 0.023 0.049 0.040 0.003 0.042 0.002 0.025 0.203 
50 0.007 0.012 0.024 0.055 0.026 0.010 0.050 0.005 0.013 0.201 

 
Table 7. Values of wi based on the average values of Ai and ni listed in Tables 4 and 5, w = 
Σwi, and the total fractional mass loss as measured by TGA, wTGA. 
 

Φ [K min-1] 1 1A 2 3 4 5 6 7 8 w wTGA 
1 0.008 0.007 0.027 0.054 0.033 0.000 0.036 0.009 0.027 0.201 0.195 
5 0.008 0.010 0.030 0.054 0.035 0.000 0.046 0.002 0.026 0.210 0.206 

10 0.007 0.009 0.027 0.041 0.045 0.001 0.037 0.008 0.027 0.202 0.196 
15 0.008 0.011 0.026 0.054 0.034 0.003 0.038 0.010 0.022 0.203 0.199 
20 0.008 0.011 0.024 0.053 0.034 0.003 0.036 0.010 0.022 0.200 0.197 
50 0.008 0.011 0.023 0.049 0.040 0.005 0.031 0.014 0.020 0.201 0.197 

 
Table 8. Values of Bi [104 K] optimized for average reaction orders and pre-exponential 
factors. 
 

Peak 1 1A 2 3 4 5 6 7 8 
Kissinger 2.25 2.04 1.88 1.61 1.83 4.49 2.98 3.17 2.60 
Fit to all data  2.25 2.04 1.87 1.61 1.83 4.52 2.98 3.17 2.59 
Average of separate fits 2.25 2.04 1.88 1.61 1.83 4.50 2.99 3.17 2.59 
StDev 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.03 0.03 
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Fig. 7.  
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Fig. A1. 
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Fig. B1.  
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Fig. B2.  
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