River Corridor Closure Project

Recovery Act Weekly Report

For the week ending July 29, 2011

Contract DE-AC06-05RL14655
Overview

Background Summary of Projects that Washington Closure Hanford (WCH) will accomplish using ARRA funds.

A. The Environmental Restoration Disposal Facility (ERDF)

ERDF is the hub of the WCH scope of work and supports a major portion of other Hanford contractor (OHC) waste disposal. Wastes collected from sites around the Hanford complex are brought to ERDF for treatment and disposal. WCH operates the ERDF and is currently using ARRA funds to upgrade and expand its capabilities to meet the needs of Hanford’s accelerating mission.

B. The 618-10 Burial Grounds

The trenches at 618-10 have long been regarded as some of Hanford’s worst waste sites. Using ARRA funds, WCH will characterize the site. Intrusive and non-intrusive techniques will be used, and the subsequent analysis of data will enable the project to pursue remediation of the site safely and effectively.

C. The 618-11 Burial Grounds

Along with 618-10, the 618-11 Burial Grounds are among the biggest challenges faced by WCH using ARRA funds. The 618-11 characterization work will require special care because of its proximity to the Energy Northwest Generating Facility, north of the 300 Area.

D. Waste Site Remediation

WCH is employing ARRA funds to clean up many failed waste sites not originally part of its contract. Sites in the 100-F and IU 2&6 segments 1&2 are proposed for waste site remediation in the two year period starting in October 2009.

E. Confirmatory Sampling of other new sites

WCH is proposing to complete the early sampling process of 67 potential waste sites using ARRA funds. Confirmatory sampling is performed for sites that require additional information for determining if the site requires remediation.

This weekly report will provide evidence of these activities as they occur in support of ARRA.

The following figure illustrates the overall scope of WCH’s ARRA projects.
Overview (Continued)

ARRA Scope

67 new sites identified for confirmatory sampling

6 waste sites in Seg. 1

Road improvements to enhance ERDF transportation

Completion of 19 sites accelerates closure of 106-F Area

Construction of new super cells 9810

Acquisition of new and used equipment and facilities

Non-intrusive characterization of 618-11

Pursue remediation of 618-10 trenches

Orphan Site Evaluation and Report of Seg. 2

Non-intrusive and intrusive characterization of 618-10
Safety

Safety Accomplishments
As of June 19, 2011, WCH and its subcontractors worked 609,809 hours of ARRA scope with no safety incidents.

Hazard Reductions
The River Corridor Closure Project's Weekly Safety Roundup focuses on safety issues that affect Hanford Site workers. A recent topic in the Roundup focused on Ergonomic Awareness and Prevention.

More than five million workers sustain overextension injuries per year. With workers’ compensation costs soaring and ergonomic legislation coming to fruition in certain industries, employers are implementing broad-based ergonomic programs. According to the Occupational Safety and Health Administration (OSHA), “work-related musculoskeletal disorders (MSDs) currently account for one-third of all occupational injuries and illnesses reported to the Bureau of Labor Statistics (BLS) by employers every year. These disorders constitute the largest job-related injury and illness problem in the United States today.”

Ergonomics is the science of fitting jobs to people. The discipline encompasses a body of knowledge about physical abilities and limitations as well as other human characteristics that are relevant to job design. Essentially, ergonomics is the relationship between the worker and the job and focuses on the design of work areas to enhance job performance. Ergonomics can help prevent injuries and limit secondary injuries as well as accommodate individuals with various disabilities, including those with a musculoskeletal disorder.

The following guidelines for ergonomic evaluation of any work activity (not only computer workstations).

Work-Area
- Look at the physical layout of the work area. Does the employee need to bend, stoop, twist, turn, or lift to do the job. Work should be arranged to be within easy reach with routine work located within 12 inches of the worker. Frequently used materials should be located within 18 inches maximum of the worker. Such an arrangement reduces potential stress to the back, shoulders, and arms by avoiding awkward postures and positions.

- What equipment is used in the work setting? Does it require repetitive activities, produce shock, or vibration, or involve changes in temperature?

- What environmental conditions are required for task completion? These conditions include physical (hot/cold, inside/outside, noise level, lighting, dust, ventilation) and social (works with the public, works under deadlines, works alone).

Workstation
- How is the workstation arranged?
- How do workers obtain and discard equipment and materials?
- How is the work organized?
Safety (Continued)

Work Activities

- What are the relationships among the job tasks? If there is a task sequence, document the task order.

- What worker movements are necessary to accomplish the job? If there is another way to perform a job function, note this (e.g., lifting with an assistive device, typing with an alternative input device).

- What safety and quality control measures are in place? Document potential workplace hazards and the measures taken to eliminate them.
Cost/Contract Status

<table>
<thead>
<tr>
<th>Contract Mod #</th>
<th>Date</th>
<th>Scope</th>
<th>Obligated ($M) (Inception to Date)</th>
<th>Not to Exceed ($M) (Inception to Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>099</td>
<td>4/9/09</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC</td>
<td>$203.0</td>
<td>$26.0</td>
</tr>
<tr>
<td>105</td>
<td>4/9/09</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC</td>
<td>$203.0</td>
<td>$44.5</td>
</tr>
<tr>
<td>126</td>
<td>7/23/09</td>
<td>H.37 Clause - Reporting Requirements</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>139</td>
<td>9/3/09</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC</td>
<td>$253.6</td>
<td>$44.5</td>
</tr>
<tr>
<td>142</td>
<td>9/30/09</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC, Phase 2 Scope</td>
<td>$253.6</td>
<td>$123.8</td>
</tr>
<tr>
<td>174</td>
<td>2/22/10</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC, Phase 2 Scope</td>
<td>$248.2</td>
<td>$123.8</td>
</tr>
<tr>
<td>182</td>
<td>3/28/10</td>
<td>ERDF Cell Expansion & Upgrades; 618-10 NIC, Phase 2 Scope</td>
<td>$248.2</td>
<td>$155.6</td>
</tr>
<tr>
<td>185</td>
<td>4/19/10</td>
<td>Phase 1 and Phase 2 Scope</td>
<td>$248.2</td>
<td>$178.0</td>
</tr>
<tr>
<td>192</td>
<td>4/27/10</td>
<td>Phase 1 and Phase 2 Scope</td>
<td>$253.6</td>
<td>$178.0</td>
</tr>
<tr>
<td>205</td>
<td>5/26/10</td>
<td>Reallocate Funds for Equipment and GPPs</td>
<td>$253.6</td>
<td>$178.0</td>
</tr>
<tr>
<td>210</td>
<td>6/23/10</td>
<td>Funding re-obligation</td>
<td>$229.3</td>
<td>$178.0</td>
</tr>
<tr>
<td>217</td>
<td>8/4/10</td>
<td>Funding re-obligation</td>
<td>$233.6</td>
<td>$178.0</td>
</tr>
<tr>
<td>230</td>
<td>9/24/10</td>
<td>Phase 3 De-obligation</td>
<td>$233.6</td>
<td>$178.0</td>
</tr>
<tr>
<td>241</td>
<td>11/22/10</td>
<td>Reallocate Funds for Equipment</td>
<td>$233.6</td>
<td>$178.0</td>
</tr>
<tr>
<td>242</td>
<td>12/1/10</td>
<td>Increase the Cost Authority on RL-0041.R2</td>
<td>$233.6</td>
<td>$196.6</td>
</tr>
<tr>
<td>247</td>
<td>12/16/10</td>
<td>Reallocate Funds for Capital Expenditures</td>
<td>$233.6</td>
<td>$196.6</td>
</tr>
<tr>
<td>253</td>
<td>1/18/11</td>
<td>Increase 41.R1 Cost Authority and reallocate funds for capital</td>
<td>$233.6</td>
<td>$214.4</td>
</tr>
<tr>
<td>261</td>
<td>4/5/11</td>
<td>Increase Cost Authority on RL-0041.R2</td>
<td>$233.6</td>
<td>$214.4</td>
</tr>
<tr>
<td>284</td>
<td>4/14/11</td>
<td>Reallocate Funds for Capital Expenditures</td>
<td>$233.6</td>
<td>$233.6</td>
</tr>
<tr>
<td>291</td>
<td>5/9/11</td>
<td>Authorization to change ERDF operations to ARRA</td>
<td>$233.6</td>
<td>$233.6</td>
</tr>
<tr>
<td>296</td>
<td>5/29/11</td>
<td>Reallocate Funds for Capital Expenditures</td>
<td>$233.6</td>
<td>$233.6</td>
</tr>
<tr>
<td>304</td>
<td>6/15/11</td>
<td>Reallocate Funds for Capital Expenditures</td>
<td>$233.6</td>
<td>$233.6</td>
</tr>
</tbody>
</table>

RCC Project - ARRA

Current Performance Measurement Baseline (PMB)

Prior Years / FY11 Fiscal Month

<table>
<thead>
<tr>
<th>Apportionment Number</th>
<th>Apportionment Title</th>
<th>June 2011</th>
<th>Inception To Date</th>
<th>Cost Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL-0041.R1</td>
<td>ERDF Cell Expansion</td>
<td>PMB</td>
<td>5,764</td>
<td>116,813</td>
</tr>
<tr>
<td>RL-0041.R2</td>
<td>River Corridor Soil & Groundwater (618-10)</td>
<td>PMB</td>
<td>1,897</td>
<td>164,670</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>PMB</td>
<td>7,661</td>
<td>233,601</td>
</tr>
<tr>
<td>Fee</td>
<td></td>
<td></td>
<td>580</td>
<td>15,677</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>PMB</td>
<td>8,241</td>
<td>180,347</td>
</tr>
</tbody>
</table>

* PMB = Performance Measurement Baseline.
ERDF

Super Cells 9 and 10 Construction
WCH and subcontractors TradeWind Services and DelHur Industries completed construction of super cells 9 and 10 in February. Super cell 9 was placed into service in February, and waste is expected to be introduced to super cell 10 later this summer.

The addition of the super cells increased the Environmental Restoration Disposal Facility’s (ERDF) capacity by 5.6 million tons for a total of 16.4 million tons. The expansion project, initially scheduled to be completed by September 30, 2011, was finished 7 months ahead of schedule and nearly $16.4 million under budget. The construction of super cell 10 included upgrades to the leachate transmission pipe and construction of two new leachate storage tanks.

The project team used lessons learned from previous cell construction to devise the design for the super cells. A super cell is equivalent to an existing pair of cells – 1,000 feet long, 500 feet wide, and 70 feet deep – and is more cost-efficient because it simplifies the leachate collection system. The super cell design eliminated 12 inches of drainage gravel and requires fewer pumps, motors, crest pads, valves, and other pieces of equipment. The result was a cost reduction of $1.5 million per super cell.

In addition, weather enclosures for cells 1 and 2 were constructed. The enclosures provide protection for the existing leachate piping systems and electrical/instrumentation.
ERDF (Continued)

A view from the northwest corner of the Environmental Restoration Disposal Facility shows contaminated soil being spread over railroad ties (bottom left) that were recently disposed in super cell 9. (Photo 1)
The disposal team at the Environmental Restoration Disposal Facility spreads contaminated soil over motors from the water intake structures at K reactors. (Photo 2)
Facility and Equipment Upgrades
WCH subcontractor ELRFowler completed plumbing and electrical work at ERDF’s expanded transportation maintenance facility (TMF). Only punch-list items remain. The expanded TMF will include two additional truck bays, an exterior awning that will cover two concrete pads, and a conference room.

Work continues to connect water to the container maintenance facility and equipment maintenance facility/operations center. Construction of both facilities was completed earlier this month.

The container maintenance facility includes a large container repair line, a maintenance shop, and a weld area. The equipment maintenance facility will include two service lines, an operational storage facility, a large concrete pad, and an exterior awning over a smaller concrete pad. The new operations center will help alleviate severe overcrowding of personnel and also accommodate new employees hired to handle the increasing waste volumes.

The expanded transportation maintenance facility includes two additional truck bays, a large concrete pad, an exterior awning that will cover two smaller concrete pads, and a conference room.

WCH continues to install radio-frequency identification tags for ERDF’s new waste container tracking system. The system, designed by Pacific Northwest National Laboratory, will assist the Waste Operations team by providing the location of full and empty containers.

ERDF’s new batch plant is complete. The plant is used to produce concrete used to mix with debris, ensuring no void space during disposal operations.

Upcoming Activities
• Continue construction of the transportation maintenance facility.
Trench Remediation Project
WCH continued excavation of waste at the 618-10 Burial Ground. The project team continued excavation and drum removal from the burial ground’s south trench. As of July 28, about 38,070 bank cubic meters have been removed.

The 618-10 Burial Ground operated from 1954 to 1963, receiving low- and high-activity radioactive waste from 300 Area laboratories and fuel development facilities. Low-activity wastes were primarily disposed in 12 trenches, while the moderate- and high-activity wastes were disposed in 94 vertical pipe units (VPUs). The VPUs were constructed by welding five bottomless drums together and buried vertically about 10 feet apart.
The project team enlarges a surge trench on the east side of the 618-10 Burial Ground. Surge trenches are excavated in clean soil adjacent to the burial ground. They provide a below-ground area to hold material excavated during the trench excavation process. (Photo 4)

In September 2010, WCH completed intrusive characterization field operations at the burial ground. Test pits were dug through a subset of disposal trenches, unearthing a limited number of drums to verify the condition and types of wastes that were disposed.

Several drums containing radioactive waste, a shipping cask, and miscellaneous waste were discovered during the intrusive trench characterization activities. The drums contained depleted uranium and uranium oxide. In addition, "concreted" 55-gallon drums also were discovered. Based on the records research and the finds during intrusive characterization, the number of drums the burial ground may contain is estimated to be between 2,000 and 6,000 (most likely closer to 2,000). That includes an estimated 800 concreted drums that were used to dispose of highly radioactive waste nested inside a pipe surrounded by concrete. The pipe contains the waste and the concrete provides radiation shielding for its contents. Workers also found a cask with unknown contents, bollards, bottles, metal pieces, and other miscellaneous debris.

Nonintrusive characterization field activities were completed in May 2010. The scope of activities carried out as part of nonintrusive characterization included geophysical delineation,
618-10 Burial Ground (Continued)

in situ characterization using a multi-detector probe, and soil sampling from below a selection of 10 VPUs. During in situ characterization, measurements were collected for 100 cone penetrometers in the trench area and 375 cone penetrometers in the VPU area.

Upcoming Activities

- Continue excavation of waste trenches and processing of anomalies (drums and bottles).
In June, WCH and subcontractor North Wind Inc. completed radiological characterization of all 50 vertical pipe units (VPUs) at the 618-11 Burial Ground. The characterization report is being reviewed and is expected to be finalized in August. Infrastructure work is scheduled to begin this fall.

The 618-11 Burial Ground operated from March 1962 to December 1967. Low- to high-activity wastes from 300 Area laboratories and fuel development facilities were disposed at the site. The burial ground not only contains VPUs, but also three slope-sided trenches and five large caissons.

The 618-11 Burial Ground (green rectangle) is adjacent to Columbia Generating Station, an operating nuclear reactor. (Photo 5)

The project team began field work by conducting geophysical delineation to determine the number and location of the VPUs and caissons. The delineation was determined using reconnaissance-level magnetic field survey, detailed-level magnetic and time-domain electromagnetic induction (TDEMI) survey, and ground-penetrating radar (GPR) survey.
North Wind then installed two cone penetrometers (narrow steel tubes) about 6 to 8 inches from the exterior of each VPU and to an approximate depth of 6 feet below the VPU. A gamma-logging probe was inserted into the cone penetrometers to identify the location of radioactive materials within the VPUs.

The VPUs typically were constructed by welding five 55-gallon bottomless drums end to end. The caissons were constructed of corrugated metal pipe (8-foot diameter, 10-foot long). The top of the caisson was 15 feet below grade and connected to the surface by an offset pipe (3-foot diameter) with a dome-type cap. The trenches are 900 feet long by 500 feet wide and 25 feet deep.

The purpose of nonintrusive characterization is to characterize the burial ground’s contents without opening or exposing them to workers or the surface environment. The data collected will be used to help plan remediation strategies.

Upcoming Activities
- Review characterization report.
100-F Area

WCH and subcontractor Ojeda Business Ventures continued with the remediation of 19 waste sites at 100-F Area. Work continues to demolish concrete at 100-F-57 and load out concrete and underlying soil. The site consists of stained concrete and soil containing hexavalent chromium.

The project team also resumed excavation at 100-F-55 (contaminated ash layer) and 100-F-62 (animal farm septic lines). Excavation was completed at 100-F-61 (stained soil) and samples were sent for analysis.
100-F Area (Continued)

Samples are taken from 100-F-57. Earlier this year, the site was found to contain hexavalent chromium. (Photo 6)
Washington Closure Hanford subcontractor loads out concrete and other debris from site 100-F-57. (Photo 7)
The following sites have had the soil excavated and loaded out:

- 100-F-26:4 (process sewer pipeline section)
- 100-F-44:8 (fuel oil pipelines)
- 100-F-44:9 (process sewer pipeline)
- 100-F-45 (river bank pipeline)
- 100-F-47 (electrical substation foundation)
- 100-F-48 (coal-pit debris)
- 100-F-49 (maintenance garage lube pit foundation)
- 100-F-51 (fish laboratory footprint, pipelines)
- 100-F-55 (contaminated ash layer)
- 100-F-58 (asbestos-containing surface debris)
- 100-F-8 (drains)
- 100-F-62 (animal farm septic lines)
- 100-F-63 (animal farm radioactive effluent lines).
100-F Area (Continued)

F Reactor operated from 1945 to 1965 as one of Hanford’s nine surplus plutonium production reactors for the nation’s nuclear weapons program. The reactor was cocooned in 2003. During reactor construction and operations, waste was disposed in unlined pits and trenches throughout the site.

The 100-F Area also was the home of the experimental animal farm (EAF), which from 1945 to 1976 operated adjacent to the reactor site. The EAF used animals for studying the potential effects of ionizing radiation exposure to humans in the occupational setting. Reactor and EAF sites in the 100-F Area contributed to the discharge of contaminated cooling water, other liquids, and solid wastes.

WCH completed cleanup of 53 waste sites at F Area in 2008, loading out more than 408,000 tons of waste. However, during the course of cleanup, 19 additional waste sites were discovered.

Upcoming Activities

- Begin construction of a ramp to the 15-foot level at 100-F-57 to allow remediation of a deeper plume.

- Begin excavation and loadout of a plume at 100-F-48.

Video

Click here to view the video of cleanup activities at 100-F-57.
IU 2 & 6 Segment 1

WCH completed revegetation of the five IU 2&6 waste sites on November 30, 2010. Segment 1 encompasses about 28 square miles of the northwestern portion of the Hanford Site, away from the nine surplus plutonium production reactor areas. The waste sites were unique because they were primarily used for housing and support areas.

The remediation sites were:

- 600-341 (four areas that contained dry cell battery remnants and/or battery debris)
- 600-343 (residual ash from burned material and dumped asphalt in excavation trench)
- 600-344 (stained area)
- 600-345 (stained area with oil filters)
- 600-346 (four small fly-ash dump areas with metal debris).

Earlier this year a global positioning environmental radiological survey indicated that an additional site, 600-342, did not require additional remediation.
Confirmatory Sampling

WCH completed sampling of ARRA confirmatory sites. Sampling was performed at 41 sites in accordance with the regulator approved work instructions that were completed earlier this year. Based on the sampling results, documentation is being prepared to recommend whether the sites require remediation. This documentation is then submitted to the DOE and the regulatory agencies for review and approval. The recommendations have been approved for more than 90% of the sites; the remaining documents are in the review and approval process.
General

Media, Visits, Press Releases
- There were no significant media events this week.

Contracting Actions
- There were no significant contracting actions this week.