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What happened? ONC Report

August 1, 2012 - WESF facility declared a positive Potential Inadequacy
in the Safety Analysis (PISA) determination related to potential
radiation deterioration of concrete in the WESF pool cell.

» There has been significant gamma radiation exposure from cesium

capsules to the lower portions of the pool cell divider walls during
37 years of capsule storage.
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What happened? ONC Report

August 1, 2012 - WESF facility declared a positive Potential Inadequacy
in the Safety Analysis (PISA) determination related to potential
radiation deterioration of concrete in the WESF pool cell.

» There has been significant gamma radiation exposure from cesium
capsules to the lower portions of the pool cell divider walls during
37 years of capsule storage.

> At the radiation levels seen in the lower section of the pool cell
divider walls, studies indicate there could be a reduction in
concrete strength.

> Because there is no discussion of radiation deterioration of
concrete in the WESF DSA and no estimate of the potential
lifetime exposure levels experienced or anticipated, this issue was
declared a positive PISA.
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What happened?

August 27, 2012 - Plant Review Committee determined a positive
Unreviewed Safety Question.

» The safety class pool cell divider walls are credited with retaining
structural integrity during a design basis earthquake.

» The bottom three feet of the pool cell divider walls has received
gamma radiation exposure that has exceeded the accepted
threshold for degradation of concrete.
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What happened?

August 27, 2012 - Plant Review Committee determined a positive
Unreviewed Safety Question.

» The safety class pool cell divider walls are credited with retaining
structural integrity during a design basis earthquake.

» The bottom three feet of the pool cell divider walls has received
gamma radiation exposure that has exceeded the accepted
threshold for degradation of concrete.

» Radiation degradation of the pool cell concrete divider walls is not
currently addressed in the DSA.
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Why the problem wasn’t found

» The original hazard analysis for the WESF Safety Basis did not
consider radiation as a potential source of degradation.

OREGON
DEPARTMENT OF

ENERGY




Why the problem wasn’t found

The original hazard analysis for the WESF Safety Basis did not
consider radiation as a potential source of degradation.

Annual reviews and updates did not consider this hazard, as
there was no information to trigger a review.

OREGON
DEPARTMENT OF

ENERGY




Why the problem wasn’t found

The original hazard analysis for the WESF Safety Basis did not
consider radiation as a potential source of degradation.

Annual reviews and updates did not consider this hazard, as there
was no information to trigger a review.

No occurrence reports or lessons learned have been generated in
the DOE complex to indicate this hazard should be considered.

OREGON

DEPARTMENT OF
ENERGY




Why the problem wasn’t found

The original hazard analysis for the WESF Safety Basis did not
consider radiation as a potential source of degradation.

Annual reviews and updates did not consider this hazard, as there
was no information to trigger a review.

No occurrence reports or lessons learned have been generated in
the DOE complex to indicate this hazard should be considered.

Safety basis development documents do not call out radiation as
a hazard to be considered for structural integrity.

OREGON
DEPARTMENT OF

ENERGY




Why the problem wasn’t found

The original hazard analysis for the WESF Safety Basis did not
consider radiation as a potential source of degradation.

Annual reviews and updates did not consider this hazard, as there
was no information to trigger a review.

No occurrence reports or lessons learned have been generated in
the DOE complex to indicate this hazard should be considered.

Safety basis development documents do not call out radiation as a
hazard to be considered for structural integrity.

Consequently, personnel believed that the existing analysis
addressed all potential hazards that could affect structural
integrity.
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Major Policy Concerns

» The original hazard analysis did not consider a major risk factor
as a potential source of degradation.
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Major Policy Concerns

» The original hazard analysis did not consider a major risk factor
as a potential source of degradation.

» Annual reviews and updates did not consider or find it.
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The original hazard analysis did not consider a major risk factor
as a potential source of degradation.

Annual reviews and updates did not consider or find it.

No occurrence reports or lessons learned across DOE complex.
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The safety culture neither identified the hazard, nor sought out
unknown hazards.
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Major Policy Concerns

The original hazard analysis did not consider a major risk factor
as a potential source of degradation.

Annual reviews and updates did not consider or find it.
No occurrence reports or lessons learned across DOE complex.

The safety culture neither identified the hazard, nor sought out
unknown hazards.

Once found, focus on showing why this wasn’t a problem, relying
on extremely limited data.

No apparent effort to gather additional field data.

The safety basis allows the existence of accident scenarios that
cannot be responded to or resolved.
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Figure 3 - Hanford 5ite Waste Encapsulation and Storage Facility Capsule [SENL
representation based on Knight's image (1974)].

SRNL-STI-2011-00202, Characterizing DOE Hanford Waste Site
Waste Encapsulation Storage Facility Cells using Radball™ N
Figure 3, Page 6
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Waste Encapsulation Storage Facility
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Figure B.4.2.1 Waste Encapsulation and Storage Facility
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Waste Encapsulation Storage Facility
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Pool areas that have seen high dose.
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Figure 7 - Representation of the N-52-3 and N-52-4 RadBall™ deployments in Cell 6.

SRNL-STI-2011-00202, Characterizing DOE Hanford Waste Site
Waste Encapsulation Storage Facility Cells using Radball™ _
Figure 7, Page 15 ‘~6"
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Figure 6 - A) RadBall™ deployment into WESF Cell 7. B) Submerged RadBall™. ()
Directionality indicated by the black arrow on the airtight RadBall™ container.

SRNL-STI-2011-00202, Characterizing DOE Hanford Waste Site

Waste Encapsulation Storage Facility Cells using Radball™
Figure 6, Page 12 »-6"
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Figure 13 - Cherenkov radiation glow: A) Cell 6. B) Cell 7.

SRNL-STI-2011-00202, Characterizing DOE Hanford Waste Site

Waste Encapsulation Storage Facility Cells using Radball™ QF-' OREGON
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Loss of Water from a single pool

However, the immediate hazard from this event is direct radiation exposure due to loss of

I shielding water. Analyses documented in Hey (2000} indicated that the dose rate due to the direct
gamma-ray shine at a receptor 100 m (328 ft) from the nearest WESF outside wall would be 20 mSv/h
(2 rem/h). This dose rate would exceed the 0.01 Sv (1 rem) threshold for declaration of a SITE AREA
| Emergency within a half-hour. Dose field estimates (documented in Hey, 200()) at various locations in

and around WESF, that could hamper recovery activities are provided in HNF-SD-WM-BIQ-002,

Table 3-32.

The loss of water in a single pool cell creates fatal dose fields within the Pool Cell Area and a
field of approximately 120 R/h immediately outside the 225-B structure. Currently there is no control
that could be relied upon to terminate this event once capsules have been uncovered. Thus, facility
control is effectively lost. Continued progression of the event leads to a gradual evaporative loss of
water in the remaining pool cells and thermally induced failure of uncovered capsules. Even though
relatively little in the way of aitborne release would be expected from capsules initially failed in the
single pools, the loss of facility control indicates that this event is a potential initiator to the more severe
consequences of loss of water from all pool cells.
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Loss of Water from a single pool

However, the immediate hazard from this event is direct radiation exposure due to loss of

] shielding water. Analyses documented in Hey (2000} indicated that the dose rate due to the direct
gamma-ray shine at a receptor 100 m (328 ft) from the nearest WESF outside wall would be 20 mSv/h
(2 rem/h). This dose rate would exceed the 0.01 Sv (1 rem) threshold for declaration of a SITE AREA
| Emergency within a half-hour. Dose field estimates (documented in Hey, 2000) at various locations in

and around WESF, that could hamper recovery activities are provided in HNF-SD-WM-BIQ-002,

Table 3-32.

The loss of water in a single pool cell creates fatal dose fields within the Pool Cell Area and a
field of approximately 120 R/h immediately outside the 225-B structure. Currently there is no control
that could be relied upon to terminate this event once capsules have been uncovered. Thus, facility
control is effectively lost. Continued progression of the event leads to a gradual evaporative loss of
water 1n the remaining pool cells and thermally induced failure of uncovered capsules. Even though
relatively little in the way of airborne release would be expected from capsules initially failed in the
single pools, the loss of facility control indicates that this event is a potential initiator to the more severe
consequences of loss of water from all pool cells.
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Technical issues?

e Very little data on how concrete behaves in response
to radiation dose.
— Strong differences in response based on composition

— Temperature history confuses the issue, as concrete
responds very badly to high heat.

— Data starts in the 1940s and 50s. The first full graphs on
how concrete responds, like today’s exist by the 1960s.

— Other data (e.g. X10 reactor concrete excluded)
— Wet versus Dry
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Technical issues?

e Very little data on how concrete behaves in response
to radiation dose.
— Strong differences in response based on composition

— Temperature history confuses the issue, as concrete
responds very badly to high heat.

— Data starts in the 1940s and 50s. The first full graphs on
how concrete responds, like today’s exist by the 1960s.

— Other data (e.g. X10 reactor concrete excluded)
— Wet versus Dry

e Safety basis for WESF did not consider radiation

dose.
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of Radiation Dose 0-1409 MGy
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WM2010 Conference, March 7-11, 2010, Phoenix. AZ SENL-STI-2010-00004
Revision 01

Determining the Effects of Radiation on Aging Concrete Structures of
Nuclear Reactors - 10243

Cristian E. Acevedo® and Michael G. Serrato”

'Florida International University
Miami FL 33174

*Savannah River National Laboratory. Savannah River Nuclear Solutions. LLC
Savannah River Site, Aiken SC 29808

ABSTRACT

The U.S. Department of Energy Office of Environmental Management (DOE-EM) 1s responsible for the
Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex.
Some of these facilities will be completely dismantled. while others will be partially dismantled and the
remaining structure will be stabilized with cementitious fill materials. The latter 1s a process known as In-
Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing
facility conditions. and operational history. System information and material properties are needed for
aged nuclear facilities. This literature review investigated the properties of aged concrete structures
affected by radiation. In particular. this review addresses the Savannah River Site (SRS) isotope
production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels
of radiation exposure. Loss of composite compressive strength was the most commeon effect of radiation
induced damage documented at nuclear power plants.
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Concrete Compressive Strength versus gamma Dose
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Concrete Compressive Strength versus gamma Dose S = CJ(1/(L + A*R/M)D )
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Structural Strength

e Project staff assert that the concrete walls were built
to be 12 times as strong as needed.
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Questions & Concerns

e There is very little good data
— Can we find/get more? — Does the X10 data apply?
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Assumptions about how to calculate concrete
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Questions & Concerns

There is very little good data

— Can we find/get more? — Does the X10 data apply?
There is no actual data on the resistance of the
concrete used in WESF to gamma dose

— Does DOE plan to core the concrete? Or... ?

Assumptions about how to calculate concrete
strength with severe damage may not be valid

— How do we validate these?

Where else might this be a problem? SSTs, CSB, WTP,
HLW, etc... ?
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Questions & Concerns

e |sthere a credible path or mechanism that could
ever lead to drain down of a pool?

— |If so, the consequences appear to be unrecoverable with
large consequences.

— That looks to be a really bad plan.
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Questions & Concerns

e |sthere a credible path or mechanism that could
ever lead to drain down of a pool?

— |If so, the consequences appear to be unrecoverable with
large consequences.

— That looks to be a really bad plan.

e Why didn’t the safety basis consider radiation dose

to concrete?
— The initial studies were done at Hanford and known long
before.
— What other big issues are missing from this and other
facility safety basis evaluations?
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Where might there be problems?

e Can exist anywhere total dose exceeds level
where damage begins
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where damage begins

 Depends on concrete type, composition, ...
— Can be as low as 10°— 10’ rad
— Standard is 1 —1.3 x 10%° rad
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Where might there be problems?
Can exist anywhere total dose exceeds level
where damage begins

Depends on concrete type, composition, ...

— Can be as low as 10— 10/ rad
— Standard is 1 —1.3 x 1010 rad

Depends on exposure time

Knowing the half-life, and dose rate at the
beginning, average or end (termination), we
can make a table with levels of concern.
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Concrete Compressive Strength — Dose rates of concern Relative
Dose Rates
Time Exposed Timeexp| 60.00 years Initial 1.000
T 525,964 | hours Average 0.543
Half Life Cs137 ty), 30.17 years Center 0.626
Terminal 0.252
Dose rates to reach limits at time T
Oak Ridge X-10 Initial Average | Center | Terminal
10.0E+06 | rad Initial effect 35 19 22 9 rad/hour
1.0E+09 | rad 50% reduction 3,500 1,900 2,200 880 rad/hour
1.5E+09 | rad |Essentially complete| 5,300 2,900 3,300 m rad/hour
General Rule
15.0E+09 | rad Initial effect 53,000 29,000 33,000 13,000 rad/hour
100.0E+09 | rad 50% reduction 350,000 | 190,000 | 220,000 | 88,000 rad/hour
1.0E+12 | rad |Essentially complete |3,500,000| 1,900,000 2,200,000 rad/hour
"~ |ENERGY



Potential advice bullets
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