Radiological Primer Understanding Radiological Terms

Richard Bloom and Dr. Antone Brooks

Health Safety Environmental Protection Committee

Hanford Advisory Board

Tom Rogers and Crystal Mathey

Washington State Department of Health

Radioactivity vs. Radiation

- What is radioactivity?
 - Property exhibited by certain types of matter of emitting radiation spontaneously.
- What is radiation?
 - Process by which energy is emitted from a source
- Forms of ionizing radiation
 - Gamma (photons) (Typical for Cesium (Cs))
 - Beta (electrons) (Typical for Cesium and Strontium (Sr)
 - Alpha (helium nucleus) (Typical for transuranics)
 - Neutron (neutrons)
 - Cosmic rays

Radiation Facts of Life

- Radiation is present everywhere
- We are all exposed to radiation at varying levels
- Radiation protection standards are set to minimize exposure
- Extensive research on the health effects of radiation has been conducted

Radiation – Units

- Radiation energy deposited per unit mass-
 - 100 rad = 1 Gray (Gy)
- Units reflecting <u>radiation effect</u> on humans
 - 100 rem = 1 Sievert (Sv)
 - 100 mrem = 1 mSv
 - 1 mrem = $1/1000 \text{ rem} = 10 \mu \text{SV}$
- Personal exposure is cumulative
 - Background radiation* = 310 mrem/year (3.1 mSv/yr)
 - Medical and Occupational* + 300 mrem/year (3 mSv/yr)
 - * Source NRC

Orders of Magnitude

```
mega (M) = 10^6 = 1,000,000

unity = 10^0 = 1

milli (m) = 10^{-3} = 0.001

micro (\mu) = 10^{-6} = 0.000001

pico (p) = 10^{-12} = 0.00000000001
```

Radiation - Sources

- Personal Annual dose variants:
 - Terrestrial (5 100 mrem)
 - Cosmic (Altitude) (30 90 mrem)
 - Radon (150 1,800+ mrem)
 - Food/Drink (40 100 mrem)
 - +Air Travel (5 50+ mrem)
 - +Medical (1 5,000+ mrem)
 - **+**Smoking (1,000 ? mrem)

Radiation Limits As Low As Reasonably Achievable (ALARA)

- Occupational limit 5,000 mrem/year
- DOE Administrative On-site Limits = ALARA
 - General public/non-rad worker = 100 mrem/year*
 - Rad Worker = 500 mrem/year (above background)
 - Embryo/fetus = 500 mrem/gestation
 - Derived Concentration Standard (DCS) Water/ Air = 100 mrem/year (1 mSv/year)

^{*} Limited to ¼ (25 mrem) from single source

Radiation Limits As Low As Reasonably Achievable (ALARA)

- Off-site limits
 - Washington State Clean Air Act Ambient Air Standard
 - = 10 mrem/year
 - Drinking Water up to 35 mrem/year
 - Beta 4 mrem/year (eg. Sr/tritium)
 - Alpha 15 pCi/L (~11 mrem/year*)
 - Radium 5 pCi/L (~20 mrem/year*)
 - * Calculated based on DOE standard

EPA "Rad Net" Data Base Link for monitoring data http://iaspub.epa.gov/enviro/erams query v2.simple query

Dose Ranges

Radioactivity Measurement

- Becquerel (Bq) (SI Units)
 - 1 Bq = one decay (disintegration) per second
 - $O 1 Bq = 27 pCi = 2.7 10^{-11} Ci$

- Curie (Ci)
 - 1 Ci = 3.7 × 10¹⁰
 disintegrations per
 second (~# disintegrations
 per second in a gram of
 radium)
- Disintegrations per minute (dpm)
 - 60 dpm = 1 Bq
 - \bullet 1 dpm = $\sim \frac{1}{2}$ pCi
- Counts per minute (cpm)
 - Detector measurement
 - Need to multiply by a factor to get dpm

Low Activity Radioactivity Measurement

- Airborne
 - Picocurie per cubic meter (pCi/m³)
 - Microcurie/milliliter (µCi/ml)
 - DAC (Derived Air Concentrations)
- Solid
 - Microcurie/gram (µCi/g)
 - Picocurie per cubic meter (pCi/m³)
- Water
 - Picocurie/liter (pCi/l)
- Surface contamination/swipe
 - Disintegrations per minute per 100 cm²

Air Measurements

Radioactivity Area Control

- Buffer Area
 - Area used to access controlled areas.
- Radiation Areas (direct dose)
 - Direct radiation dose
- Contaminated Areas
 - Some loose radioactive material
- High Contamination Area
 - Extensive loose radioactive material
- Airborne Contamination Area
 - Potential for inhalation of radioactive material above limits

Releases/Fallout Routes of Exposure

Portland Airborne Beta 1/1/85 to 12/30/87

Strontium-90 (⁹⁰Sr) and Iodine-131 (¹³¹I)

- 90Sr has a longer physical and biological half-life
- 90Sr deposits and stays in the bone and lung
- 90Sr has a large total dose to the bone or lung at a low dose-rate, causing an increase potential for leukemia as well as lung and bone cancer
- ¹³¹I has a shorter physical and biological half-life
- 131I concentrates in thyroid causing and increase potential for thyroid and other cancers

Cancer in US

Causes of Cancer

- Individual factors
 - Inherited mutations
 - Hormones
 - Immune conditions
 - Mutations that occur from metabolism

- Environmental factors
 - Tobacco
 - Infectious organisms
 - Chemicals
 - Radiation

Lifetime Risk = Men 1 in 2 (43.9%) = Women 1 in 3 (38%) Cause of death – 1 in 4 (25%)

Source: American Cancer Society

Linear Dose Response

- A linear dose-response predicts that cancer risk is present at even extremely low doses
- Extensive research on biological effects of low dose radiation resulted in many new observations

Sources of Radiation Exposure in the United States

Source: NCRP Report No.160(2009)

Full report is available on the NCRP Web site at www.NCRPpublications.org.

Example of How Cancer Risks are Expressed by Medical Organization

Risk Level	Approximate additional risk of fatal cancer for an adult from examination:
Negligible:	less than 1 in 1,000,000
Minimal:	1 in 1,000,000 to 1 in 100,000
Very Low:	1 in 100,000 to 1 in 10,000
Low:	1 in 10,000 to 1 in 1000
Moderate:	1 in 1000 to 1 in 500

Note: These risk levels represent very small additions to the 1 in 5 chance we all have of dying from cancer.

Source: www.radiologyinfo.org

Medical Radiation Exposures

- 200 million medical x-rays/year
 - X-ray (~0.1 Rad each)
- 100 million dental x-rays/year
 - Dental (~0.07 Rad)
- 10 million doses of radiopharmaceuticals/yr
- 75 million CT scans/year
 - Head scan 30-50 Rad/scan
 - Body scan 50-100 Rad/scan
- 8 million radiation cancer therapy/yr
 - 100-8000 Rad total/treatment

Soursce: DOE Dose Chart.

Increased Risk of Cancer in Adult Example

```
Increased cancer risk per 1 rem* = 0.055%

Population impact of 1 rem –

1 earlier death due to cancer in 1,800

Risk of Cancer Death = 25%

Procedure Dose – 1,000 mrem (10mSv)

= 0.055%

New Individual Risk = 25.055%
```

* Source = ICRP (International Commission on Radiation Safety

Differing Views on Radiation Risk

- There is no safe level of radionuclide exposure whether from food, water or other sources
- Elevated radiological exposure above average background is beneficial (e.g. Live in Denver)
- The risk associated with low radiation doses needs to be weighed against the benefit of the exposure but should always be maintained ALARA

Conclusion

- The cancer risk is proportional to the exposure
- Occupational limits are set at levels (< 5 rem/year) such that cancer risk is minimal when compared to other risk factors but ALARA principles and risk vs. benefit is applied
- Effect of total radiation exposures below 1 rem per year (1,000 mrem/year) are below a level where disease rate effects are masked by the relatively high overall rate of cancer
- Lifetime risk for cancer remains relatively high regardless of added radiation exposure. Lifestyle plays a critical roll in cancer risk