Analysis of Supplemental Treatment Approaches for Low-Activity Waste at the Hanford Nuclear Reservation

Disposal Performance Evaluation

Tom Brouns
FFRDC Team Regulatory Lead
Market Sector Manager
Environmental Management
Pacific Northwest National Laboratory

Hanford Advisory Board Briefing
May 20, 2020
Waste Forms Performance Evaluation for On-Site Disposal (IDF)

- **Integrated Disposal Facility RCRA Permit and Waste Acceptance Criteria**
 - Currently limits LAW waste form to glass canisters
 - Requires Performance Assessment (PA) analysis and assessment of impacts to groundwater of all wastes to be disposed
 - *Permit specifies process to propose additional wastes for disposal (including secondary wastes)*
 - *Requires mitigation if results >75% of any performance standard (e.g., drinking water standards)*

- **2017 IDF Performance Assessment**
 - Only considered ILAW glass and secondary wastes from LAW processing
 - No consideration of SLAW alternatives or their secondary wastes

- **FFRDC Team identified the need for a Performance Evaluation (PE)**
 - Assess the ability of supplemental treatment alternatives to meet the waste acceptance criteria of IDF
 - Modelled after the 2017 IDF PA methods and approach, but a more limited effort
Groundwater concentrations of Tc and I are driven by releases from solid secondary waste (SSW).

- ^{99}Tc: 900 pCi/l
- ^{129}I: 1 pCi/l

SLAW Waste Form “Systems” for IDF Performance Evaluation

<table>
<thead>
<tr>
<th>Analysis Case</th>
<th>Supplemental LAW Waste Forms</th>
<th>Secondary Wastes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Glass (Vitrification)</td>
<td>Borosilicate Glass</td>
<td>LSW - ETF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Grout</td>
<td>Cast Stone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Steam Reforming (FBSR)</td>
<td>FBSR Mineral – Macro-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>encapsulated</td>
<td></td>
</tr>
</tbody>
</table>

FBSR=fluidized bed steam reforming; LSW=liquid secondary waste; ETF=Effluent Treatment Facility; SSW=solid secondary waste; GAC=granular activated carbon; HEPA=high efficiency particulate air filter

Three sensitivity cases (sets of waste form release parameters) were selected for each waste form:

- **Low performing case** – lower range of experimental data
- **High performing case** – upper range of experimental data
- **Projected best case** – recent enhancements to formulations and performance improvements that have been observed, but require additional studies to confirm
PE – Analysis Methodology

• Focused on groundwater pathway and impacts of key radionuclides—Tc-99 and I-129
 o Groundwater impacts from Tc and I previously shown to be key area of concern for ILAW, SLAW, and secondary wastes from LAW processing

• STOMP modeling platform applied for consistency with 2017 IDF PA analysis
 o eSTOMP (scalable version of STOMP) was used to enable more efficient modeling
 o Benchmark simulations conducted for ILAW glass and secondary wastes to assure PE was producing equivalent results to the IDF PA for the same model inputs

• Simulated a full stack of waste packages within IDF with a unit inventory of Tc-99 and I-129 in each package
 o Four stacked ILAW glass canisters, or eight stacked B-25 (secondary waste) boxes, or eight 8.3 m³ (SLAW grout or steam reforming) boxes
 o Model output provided fractional release rate (Ci released/Ci disposed/yr) from bottom of IDF as a function of time

• Translated eSTOMP-derived peak release rate to peak groundwater concentration using 2017 IDF PA algorithm based on full vadose zone and groundwater transport modeling

PRE-DECISIONAL
Performance Evaluation Results - Technetium

- All waste forms can meet Tc-99 regulatory objectives, except:
 - Low performing grout case exceeds the Tc-99 MCL of 900 pCi/L
 - Low performing FBSR case exceeds 75% of Tc-99 MCL (requiring mitigation)

- High performing and projected best cases for glass, grout, and FBSR waste form systems result in Tc-99 groundwater concentrations well below regulatory objectives

Figure F-15*. Predicted technetium-99 groundwater concentrations for 100 m downgradient compliance well for a) SLAW Glass, b) SLAW Grout, and c) SLAW Steam Reforming (FBSR) systems

Performance Evaluation Results - Iodine

- Only high performing and best cases for FBSR, and projected best cases for grout and glass met the I-129 MCL of 1 pCi/L
 - Low and high performing cases for glass and grout, and low performing case for FBSR exceeded I-129 MCL of 1 pCi/L
 - SSW GAC performance was the primary driver for the glass and FBSR cases that exceeded MCL

Figure F-17*. Predicted iodine-129 groundwater concentrations for 100 m downgradient compliance well for a) SLAW Glass; b) SLAW Grout; and c) SLAW Steam Reforming (FBSR) systems.

Outer box represents total sum of contributions of SLAW, SSW, and LSW waste forms

<table>
<thead>
<tr>
<th>NDAA CRITERIA</th>
<th>VITRIFICATION CASE: DISPOSAL ONSITE AT HANFORD</th>
<th>GROUTING CASE 1: DISPOSAL ONSITE AT HANFORD</th>
<th>GROUTING CASE 2: OFFSITE DISPOSAL</th>
<th>STEAM REFORMING CASE 1: SOLID MONOLITH PRODUCT DISPOSAL ONSITE AT HANFORD</th>
<th>STEAM REFORMING CASE 2: GRANULAR PRODUCT OFFSITE DISPOSAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISKS/OBSTACLES</td>
<td>• Difficult to build and operate because highly complex process</td>
<td>• Requires pretreatment of organics Requires wasteform validation</td>
<td>• Requires pretreatment of organics</td>
<td>• Requires most technology maturation Requires wasteform validation</td>
<td>• Requires most technology maturation</td>
</tr>
<tr>
<td>BENEFITS</td>
<td>• Similar to technology being built for first LAW</td>
<td>• Low integrated complexity No liquid secondary waste</td>
<td>• Low integrated complexity No liquid secondary waste</td>
<td>• No liquid secondary waste</td>
<td>• No liquid secondary waste</td>
</tr>
<tr>
<td>COST</td>
<td>~$20B to ~36B</td>
<td>~$2B to ~$3B</td>
<td>~$5B to ~$8B</td>
<td>~$6B to ~$12B</td>
<td>~$9B to ~$17B</td>
</tr>
<tr>
<td>YEARS NEEDED BEFORE STARTUP</td>
<td>10-15 years</td>
<td>8-13 years</td>
<td>8-13 years</td>
<td>10-15 years</td>
<td>10-15 years</td>
</tr>
<tr>
<td>REGULATORY COMPLIANCE</td>
<td>• Primary waste is compliant Secondary waste may require iodine mitigation</td>
<td>• Likely meets requirements after organics pretreatment May require iodine mitigation</td>
<td>• Compliant following organics pretreatment</td>
<td>• Likely meets technical requirements</td>
<td>• Compliant</td>
</tr>
</tbody>
</table>

PRE-DECISIONAL